Asymptotic Solutions for Gaseous Flow in a Three-Dimensional Rectangular Microchannel

نویسندگان

  • Khaleel Khasawneh
  • Hongli Liu
  • Chunpei Cai
چکیده

This paper analyzes compressible gaseous flow through a three-dimensional straight uniform rectangular microchannel, and reports a set of asymptotic solutions. This work represents an extension of previous work on compressible flows through a two-dimensional microchannel. First, we choose the ratio of Dh/L as the small expansion parameter, where Dh and L are the channel’s hydrodynamic diameter and length correspondingly. Secondly, by comparing the magnitudes of different forces in the compressible gas flow, we obtain a proper criteria to estimate the Reynolds and Mach numbers at the channel exit. We select two sets of Mach and Reynolds numbers and obtain asymptotic analytical solutions of velocities and pressure distributions of compressible gas flow inside the microchannel; and a set of the slip velocity boundary conditions are examined. The analytical results of pressure and velocities are compared with numerical simulation results of the direct simulation Monte Carlo method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaseous Slip Flow in Three-Dimensional Uniform Rectangular Microchannel

Abstract. This paper analyzes compressible gaseous slip flow through a three-dimensional straight uniform rectangular microchannel, and reports a set of asymptotic solutions. By comparing the magnitudes of different forces in the compressible gas flow, we obtain a proper criteria to estimate the Reynolds and Mach numbers at the channel exit. We select two sets of Mach and Reynolds numbers and o...

متن کامل

Numerical investigating the gas slip flow in the microchannel heat sink using different materials

In this work, slip flow of helium gas has been studied in a three dimensional rectangular microchannel heat sink with 11 microchannel and 10 rectangular fins. Helium gas flow is considered ideal and incompressible. The finite volume method with using coupled algorithm is employed to carry out the computation. To validate the present work, comparison with numerical and experimental studies is do...

متن کامل

Three-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach

In this paper, three-dimensional incompressible laminar fluid flow in a rectangular microchannel heat sink (MCHS) using Al2O3/water nanofluid as a cooling fluid is numerically studied. CFD prediction of fluid flow and forced convection heat transfer properties of nanofluid using single-phase and two-phase model (Eulerian-Eulerian approach) are compared. Hydraulic and thermal performance of microch...

متن کامل

A NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN MICROCHANNELS (RESEARCH NOTE)

Three-dimensional simulations of the single-phase laminar flow and forced convective heat transfer of water in microchannels with small rectangular sections having specific hydraulic diameters and distinct geometric configurations were investigated numerically. The numerical results indicated that the laminar heat transfer was to be dependent upon the aspect ratio and the ratio of the hydraulic...

متن کامل

Three dimensional numerical study on a trapezoidal microchannel heat sink with different inlet/outlet arrangements utilizing variable properties nanofluid

Nowadays, microchannels as closed circuits channels for fluid flow and heat removal are an integral part of the silicon-based electronic microsystems. Most of previous numerical studies on microchannel heat sinks (MCHS) have been performed for a two-dimensional domain using constant properties of the working fluid. In this study, laminar fluid flow and heat transfer of variable properties Al2O3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010